
Phishing URL Classification

CS 4262
Spring 2023

Andrew Cascio * 1 Scott Kang * 1

Abstract

Many people fall victim to social engineering reg-
ularly, namely phishing attacks. A phishing URL
is disguised as a familiar URL, often accompanied
by urgent or threatening messages with the intent
of extracting personal information from its victim.
This project aims to compare the accuracies and
training times of three main classification meth-
ods to determine the best way to identify these
scams.

1. Introduction
Millions of scam emails are sent daily, and within them,
phishing URLs. These links are often sent with malicious
intent. Such emails are the cause of most security breaches
in companies. Most people can identify them, but those that
are less tech savvy fall into the crossfire. A phishing URL
is often accompanied by an urgent message. Often times,
it’s asking the recipient to verify their banking information,
or to log into their social media account due to ’suspicious’
activity. While most of these emails are easy to spot, and
often filtered by email sites such as Gmail, many still seep
through the cracks.

1.1. Problem

The problem we want to solve can be framed as: given a
URL, is it a legitimate URL or a phishing URL? We aim
to find the best method of determining this by comparing
models in both accuracy and training time over a range of
different feature subsets extracted by various feature selec-
tion techniques.

*Equal contribution 1School of Engineering, Vanderbilt
University, Nashville, Tennessee. Correspondence to: An-
drew Cascio <andrew.c.cascio@vanderbilt.edu>, Scott Kang
<kyung.ho.kang@vanderbilt.edu>.

Copyright 2023 by the author(s).

1.2. Dataset

The dataset is taken from Kaggle. It contains 11430 URLs
with 87 features after pre-processing. In terms of these fea-
tures, 56 are extracted from the structure and syntax of the
URLs, 24 are extracted from the content of their correspond-
ing pages, and 7 are extracted by querying external services.
The dataset is balanced, as it contains exactly half phishing
and half legitimate URLs.

1.3. Related Work

The detection and classification of phishing URLs remains
a critical challenge in the field of information security. A
range of approaches have been proposed to address this
problem, including those that rely on analyzing various
features associated with the URLs. For instance, Garera
proposed a machine learning-based approach that utilizes
features such as page ranking and word analysis to classify
malicious URLs. Similarly, Blum developed a model that
only uses URL-based features such as domain name and
special characters to detect phishing URLs. These studies
highlight the potential of feature-based approaches for ac-
curately identifying malicious URLs. We will use some
combination of both methods in this study.

2. Methods
We chose to delve into three different supervised learning
techniques. Namely, these are K-Nearest Neighbors, Sup-
port Vector Machines, and a feedforward Neural Network.
The two primary metrics of success are:

1. accuracy on a held-out test set, and

2. time to train the model.

All three classification techniques will be evaluated accord-
ing to these primary metric across multiple training feature
sets. The sets of features used to train the models are:

1. all 87 features,



Phishing URL Classification

2. features that explain 90% of the variance as selected
by Principal Component Analysis, and

3. the top 40 features corresponding to the highest mutual
information with the output.

2.1. Pre-processing

Of the dataset’s 89 features, there are two non-numeric
features that must be translated. The first is the URL itself.
We removed this feature from the dataset entirely as it is
not a feature. The second is the classification. Each URL
corresponds to a string feature that is either ’legitimate’ or
’phishing’, which serves as its classification. In order for
our algorithms to function properly, we mapped ’legitimate’
to 1 and ’phishing’ to 0. The remaining features are discrete
and numeric.

All features are discrete, however, some features take values
up to several hundreds while others are can be represented by
a single bit—simply a 1 or 0. Taking this into account—and
in order to perform Principal Component Analysis later—
we standardized each feature to a mean of 0 and a standard
deviation of 1. We shuffled and split the dataset into train
and test sets using a standard 80/20 split.

2.2. K-Nearest Neighbors

To begin our analysis of phishing URLs, we decided to ex-
plore a classification algorithm with essentially zero training
time, K-Nearest Neighbors (KNN). Each input corresponds
to an 87-dimensional vector, and Euclidean distance was
chosen to be the distance metric. The main hyperparameter
of the KNN algorithm is k, which we chose by running
10-fold cross validation within our training set for each
k ∈ {1, 2, 3, ..., 15}. Our primary performance metric was
accuracy on our held-out test set. The best performing
hyperparameter was chosen to be k = 3, with declining
performance for higher k, as seen in Figure 1.

2.3. Support Vector Machine

The second classification algorithm we leveraged was the
Support Vector Machine (SVM). We opted for a radial basis
function (RBF) kernel. The RBF kernel is a popular choice
in SVMs because it can model complex nonlinear decision
boundaries by mapping the original input data into a higher-
dimensional feature space. This mapping is accomplished
by applying a Gaussian function to the pairwise Euclidean
distances between each pair of data points. To classify a
new vector, the SVM calculates the distance between the
new vector and the decision boundary in the feature space.
In binary classification, if the distance is positive, the point
is classified as belonging to one class, and if it is negative
the point is classified as belonging to the other class. The
RBF kernel has two hyperparameters: the γ (gamma) pa-

Figure 1. A plot of accuracies for each value of k. Accuracies were
measured using 10-fold cross validation with all 87 features for
each potential k. The optimal value of k = 3 was chosen for the
model.

rameter controls the width of the Gaussian function, and
the regularization parameter C controls the trade-off be-
tween achieving a low training error and a large margin. A
smaller value of γ results in a wider bell-shaped curve and
a smoother decision boundary, while a larger value of γ
results in a narrower curve and a more complex decision
boundary, but lends to possible overfitting. A smaller value
of C allows for a larger margin and more misclassifications,
while a larger value of C results in a smaller margin and
fewer misclassifications, but possible overfitting. To deter-
mine the optimal hyperparameter pair, we selected C from
{0.01, 1, 100} and γ from {0.001, 0.5, 1}. For each possi-
ble combination, we ran 4-fold cross validation. We found
that C = 100 and γ = 0.001 gave the best accuracy score.

2.4. Neural Network

The third classification model we used in this study was a
feedforward neural network, namely a multilayer percep-
tron. For our purposes, this vanilla neural network of a
single hidden layer is sufficient to obtain high test accura-
cies. Our network consists of a single hidden layer with 16
nodes, each with a ReLU activation function. The output
layer consists of a single node with a sigmoid activation
function for classification. We decided to use Adam as our
optimization algorithm with a learning rate of 0.001. The
training and validation accuracies are shown in Figure 2.

2.5. Principal Component Analysis

Principal Component Analysis (PCA) is a widely used tech-
nique for dimensionality reduction in machine learning and



Phishing URL Classification

Figure 2. The training and validation accuracies of the neural net-
work as it is trained over 5 epochs.

data analysis. In this study, we performed PCA on the
dataset of size 9144 x 87, where 9144 is the number of
samples and 87 is the number of features. We identified a
set of eigenvectors, called principal components, that cap-
ture a maximum amount of variance in the original dataset.
We computed the covariance matrix of the training data set
to derive eigenvalues and eigenvectors. Then, we sorted
the principal components in order of largest corresponding
eigenvalue to lowest corresponding eigenvalue. Figure 3
shows a cumulative function of the explained variance of the
principal components used to identify the number of eigen-
vectors that capture 90% of variance. The result showed
that the first 51 principal components explain approximately
89.9% of the cumulative variance in the training set. We
performed a transformation of the dataset using the first
51 principal components, reducing the dimension of the
dataset from 87 to 51. After the transformation, using the
51 principal components we retrained the previous models
to compare the performance again over our primary metrics
of accuracy on the test set and training time. The hyperpa-
rameters chosen stayed constant for each model.

2.6. Mutual information

Main approaches for feature selection fall into two cate-
gories: wrapper methods and filter methods. The feature
selection method that we chose for this study is the filter
method of mutual information. Mutual information (MI)
is a measure of dependence between two variables. The
value indicates the amount of information that knowing one
variable provides about the other variable. Figure 5 shows
mutual information values between top features and the out-
put. From the initial set of 87 features, we selected the top
40 features that had the highest mutual information with the

Figure 3. A function of the cumulative explained variance over the
principal components. The first 51 principal components explain
90% of the variance.

output variable. We then used this reduced feature set to
retrain our models and compare the performance once again
to the original models.

The hyperparameters chosen using cross validation stayed
constant for the SVM model, but changed for the KNN
model. The optimal value of k = 5 was selected, as opposed
to the optimal value of k = 3 selected by using all 87
features.

Figure 4. A plot of accuracies for each value of k. Accuracies were
measured using 10-fold cross validation using the 40 features with
the highest MI with the output for each potential k. The optimal
value of k = 5 was chosen for the model.



Phishing URL Classification

Figure 5. Mutual information between the 40 features with the
highest MI and the output.

3. Results
As previously stated, the primary metrics we used to mea-
sure success are accuracy on a held-out test set, and time to
train. We trained each optimized model 10 times for each
training feature set and took the average time to train. These
sets are: all 87 features, the 51 eigenvectors that explain
90% of the variance as selected by PCA, and the top 40
features with the highest MI with the output. The accuracy
results for each model and each feature set are displayed in
Figure 6, the training times are displayed in Figure 7, and
the KNN prediction times are displayed in Figure 8.

3.1. All features

When training each model using all 87 features, SVM had
the highest accuracy on the held-out test set—at the expense
of the greatest training time—with an accuracy of 95.9%.

The neural network (MLP) had the lowest average training
time of 0.463 seconds. Note that KNN does not have a
training time; its prediction time is graphed separately in
Figure 8.

3.2. Principal Component Analysis

When training each model using features selected by PCA,
the training time for our SVM decreased by 17.7%, and the
training time for our MLP decreased by 2.8%. For the KNN
model, the prediction time decreased by 14.6%. Models
after PCA decreased the accuracy by 0.6% for our SVM and
0.3% for our MLP. For the KNN model, the accuracy on the
test set increased by 0.6%.

3.3. Mutual information

When training each model after feature selection, we com-
pare to the original feature set of all 87 features. The training
time for our SVM decreased by 39.7% and the training time
for our MLP increased by 1.5%. For KNN, the prediction
time decreased by 16.5%. Models after feature selection
decreased the accuracy on the held-out test set by 0.1% for
our SVM. For KNN, the accuracy increased by 1.4%, and
for our MLP it increased by 0.3%.

Figure 6. A multi-bar graph of the accuracies of each model for
each feature set on a held-out test set.

4. Discussion and Conclusions
In summary, the SVM model outperformed the rest with test
accuracies upwards of 96%. Part of this can be attributed to
the fact that it is great when learning in a high dimensional
feature space. It maintained a similar score for each feature
set, performing the best with all 87 features. The KNN
model improved as the number of dimensions decreased,
which can be attributed to what is commonly referred to



Phishing URL Classification

Figure 7. A multi-bar graph of the average training time of each
model for each feature set taken over 10 samples.

as ’the curse of dimensionality’. That is, as the number
of dimensions increase, the distance to the nearest vector
approaches the distance to that of the average vector. This
hurts the assumption that the closest vectors are the most
similar. Since the number of dimensions are decreasing
with each feature group, the prediction time of KNN also
decreases, as seen in Figure 8. Similarly, the training time
for the SVM model decreased with decreasing number of
dimensions, as seen in Figure 7. This is likely because
calculating the inner product is linear in n. In contrast,
the training time of the neural network stayed relatively
constant, eventually surpassing that of the SVM after MI
feature selection.

Visualizing our findings posed a challenge in this study due
to the comparison of three different models with distinct
data transformations. Effectively comparing and contrasting
these models was difficult.

In the future, we want to consider optimizing hyperparame-
ters for our neural network, and comparing logistic regres-
sion with the models we have already studied. In addition,
we may test if performing Principal Component Analysis
after feature selection produces different outcomes. Lastly,
we may implement other popular machine learning models,
such as convolutional neural networks and decision trees,
which are widely used to classify phishing URLs.

Acknowledgements
Andrew Cascio worked on training the KNN and SVM
models with each feature set, and finding the optimal hyper-
parameters for each model.

Scott Kang worked on training the neural network and im-

Figure 8. A multi-bar graph of the prediction time of the K-Nearest
neighbors classifier for each feature set.

plementing dimensionality reduction and feature selection.

References
Garera, S., Provos, N., Chew, M., Rubin, A.D. (2007,
November). A framework for detection and measurement
of phishing attacks. In Proceedings of the 2007 ACM work-
shop on Recurring malcode (pp. 1-8).

A. Blum, B. Wardman, T. Solorio, G. Warner Lexical fea-
ture based phishing URL detection using online learning
Proceedings of the 3rd ACM workshop on security and ar-
tificial intelligence, AISEC, Chicago,Illinois,USA (2010),
10.1145/1866423.1866434

Ahmed, N. (2022, October 6). A python implementa-
tion of PCA with NumPy. Medium. Retrieved April 13,
2023, from https://medium.com/@nahmed3536/a-python-
implementation-of-pca-with-numpy-1bbd3b21de2e

Bas, L. (2020, April 24).K-nearest neighbors classifi-
cation from scratch with NumPy. Medium. Retrieved
April 13, 2023, from https://towardsdatascience.com/k-
nearest-neighbors-classification-from-scratch-with-numpy-
cb222ecfeac1


